国考报名相关 地方站:
您的当前位置:江苏公务员考试网 >> 行测资料 >> 数量

2018江苏公务员考试行测答题技巧:比较构造法

发布:2018-01-17 11:39:09 字号: | | 我要提问我要提问
  本期为各位考生带来了2018江苏公务员考试行测答题技巧:比较构造法。相信行测考试一定是很多考生需要努力攻克的一道坎儿。行测中涉及的知识面之广,考点之细,需要开始做到在积累的同时掌握一定的解题技巧。江苏公务员考试网温馨提示考生阅读下文,相信能给考生带来一定的帮助。
  更多江苏公务员考试技巧详见 2018年江苏公务员考试用书(免费赠送200+课时在线听课,2万道题在线刷题、200套真题在线模考)
  仔细研读下文>>>2018江苏公务员考试行测答题技巧:比较构造法
  在行测笔试做题中考生用的最多的方法就是列方程,之前给考生介绍了列方程中的等量构造法,相信考生已经有所掌握。但是,在应对有些题目的时候,用等量构造法可能会显得有些繁琐。那么接下来专家通过一个例题给考生介绍一个新的方法。
  【例1】:有一口井,用一根绳子平均折成两段比井深多三米;如果平均分成三段,比井深多1米。问井深多少?
01
  图中两个绳子总长是一样的,同时我们很容易发现红线部分长度是完全相同的。两图中相异的部分,也即是黑线部分,长度也应该是一样。左图中黑线部分由两根绳组成,每一根是3-1=2,总长为4。而右图中黑线部分长度是井深加1,所以井深=4-1=3
  我们现在来看一下这种方法的做题思路,首先题目中反映的是一口井由不同的角度或者不同的维度去测量。做题过程中,通过对比两次测量中异同,根据不同的部分,列出了一个等式。
  在上述题目中,我们就运用到了比较构造法,写一下对比构造法的含义:同一事件,多种维度描述,通过比较其中的差异,构造等量关系。
  上面那道题目很简单,是因为题目中的维度关系非常的清晰,但是有一些题目维度关系就不是那么清晰了。来看一下第二道题目。
  【例2】:某公司举办年终晚宴,每桌安排7名普通员工与3名管理人员,到最后2桌时,由于管理人员安排完,便全部安排了普通员工,结果还差2名人才能刚好坐满,已知该公司普通员工人数是管理人员的3倍,则该公司有管理人员多少人
  再看第二个条件,人数上,普通员工是管理人员三倍。如果说每一桌的普通员工人数是管理人员三倍的话,那么刚好就能坐成整数桌。根据条件,每桌的管理人员为3个,3的三倍是9,所以三倍的情况可以看作是每桌9个普通员工加上3个管理人员。这个题目就是用7+3的情况与人数三倍的情况(即9+3)进行比较
  首先看第一个条件,满座就是7+3等于十个人,最后两桌一共差两个人满,那就是20-2=18人,故最后两桌是18个。
02
  再看第二个条件,人数上,普通员工是管理人员三倍。如果说每一桌的普通员工人数是管理人员三倍的话,那么刚好就能坐成整数桌。根据条件,每桌的管理人员为3个,3的三倍是9,所以三倍的情况可以看作是每桌9个普通员工加上3个管理人员。这个题目就是用7+3的情况与人数三倍的情况(即9+3)进行比较
03
  比较这7+3和9+3两种情况,除了第一种情况中的18个员工,其他每一桌的管理人员相同,但是普通员工每一桌都多了两个,所以我们可以看作是用第一个情况中的18个人往每个桌子中补充了两个人,最终能够补9桌,所以按照9+3去排的话,可以排9桌。又因为这两种情况区别相当于18个普通员工挪了一下位子,所以总人数肯定不变。用第二种情况去算人数就行,管理人员=9×3=27人
  从第一题到第二题难度上是有所增加的,这是因为第二题的维度关系不像第一题那么清晰,我们是把三倍关系构建成一个维度然后再进行比较,为了能够更好的培养这种构建维度关系的能力。再看一下第三题:
  【例3】:某干旱地区为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:在标准以内,每立方米的水费为1.2元,超过标准线的部分每立方米多交0.3元;如果标准用水量为5吨,那么张家比李家多交水费5.4元,若水费标准和两家用水量都是正整数,那么张家比李家多用几顿水?
  设张家用水x吨,李家用水y吨,则有三种可能性:①若两家用水都在标准用水量以内,方程为:1.2x-1.2y=5.4,显然无正整数解,因此排除;②若两家用水都在标准用水量以外,方程为:(1.2+0.3)x-(1.2+0.3)y=5.4,显然也无正整数解,因此排除;③张家用水超过标准用水量,李家用水低于标准用水量。
  方法一,常规思维得到:张家总水费为1.2×5+(x-5)·(1.2+0.3),李家水费为1.2y,方程为:1.2×5+(x-5)·(1.2+0.3)-1.2y=5.4,化简得:1.5x-1.2y=6.9,利用同余特性解得x=7,y=3,张家比李家多:x-y=4吨。
  方法二,设张家比标准用水量多x吨,那么张家水费比标准水费多(1.2+0.3)x=1.5x,设李家比标准用水量少y吨,那么李家水费比标准水费少1.2y。根据题意得到方程:1.5x+1.2y=5.4,利用同余特性解得:x=2,y=2。张家用水5+2=7吨,李家用水5-2=3吨,张家比李家多7-3=4吨。
  显然方法二中比较构造法列的方程更为简洁明了,提高了解题效率,降低出错率。
  综合起来看这三道题,专家总结:比较构造法解题的时候为什么会比等量构造法要简便呢,这是因为,我们把不同维度的相同部分暂时不去比较,只关注其相异部分,并根据其建立等量关系,这就给我们的做题带来极大的便利。

点击分享此信息:
RSS Tags
返回网页顶部
CopyRight 2023 http://www.jsskw.org.cn/ All Rights Reserved 苏ICP备15022290号-13
(任何引用或转载本站内容及样式须注明版权)XML